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.Complex Dynamics of the Integer Quantum Hall Effect

S. A. Trugman® and V. Nikos Nicopoulos®*®
@ Theoretical Division MS-B262, Los Alamos National Laboratory,
Los Alamos, NM 87545
b Department of Physics, University of Florida,
Gasnesville, FL 32611
We investigate both classical and quantum potential scattering in two dimen-
sions in a magnetic field, with applications to the integer quantum Hall effect.
Classical scattering is complex, due in one case to the approach of scattering
states to an infinite number of bound states. We show that bound states are
generic, and occur for all but extremely smooth scattering potentials (|9V| — 0).
Quantum scattering follows the classical behavior rather closely, exhibiting sharp
resonances rather thar classical bound states. Extended scatterers provide an

explanation for the breakdown of the QHE at a comparatively small Hall voltage.
I. INTRODUCTION
The quantum Hall effect has been reviewed by Prange and Girvin.! It occurs when
electrons are confined to two dimensions and placed in a strong magnetic field. The

Hamiltonian is
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where the magnetic field B = ¥V x A = B3 and 7; = (z,y). The firat term is the
e¢lectron kinetic energy in the presence of a magnetic field. The second is a random
potential, due perhaps to impurities. The third term is the interaction between

electrons. The final term is added to indicate that we seek the linear and nonlinear



.esponase to a Hall electric field E.

The fractional quantum Hall effect (FQHE) has plateaus of the Hall conductivity
o=y = (p/q) €?/h, where p and g are integers. It is a many-body problem in which the
first and third terms in Eq. (1) are most important. The FQHE will not be discussed
in this paper.

The integer quantum Hall effect has plateaus of the Hall conductivity at integer
multiples of e?/A. Most of the essential physics of the IQHE is captured by the one-
body problem with the vy; term omitted. That is the approach taken here. Note that
the random potential Vi cannot be omitted, even in the first approximation. Without
VR, the problem is simple to solve exactly, and the plateaus in the Hall conductivity
disappear.

For the IQHE, perhaps the most basic question one could ask is: “How does potential
scattering happen in a magnetic field?” As we discuss below, potential scattering in
a magnetic field is quite complicated, and not completely understood. This question
is often bypassed in the theory of the IQHE. Laughlin, for example, has given an
elegant gauge invariance argument for the quantization of the Hall conductivity.?
This argument cannot, however, explain what happens to o,y or 0,4 off of a plateau
or at nonzero temperature or frequency. It also cannot explain nonlinear response,
including the breakdown of the QHE, or noise or fluctuation effects. To deal with
these questions, one must answer the basic question about scattering in a magnetic
field. We first consider classical potential scattering in a magnetic field, and then

quantur- scattering.

II. CLASSICAL POTENTIAL SCATTERING
In zero magnetic field, scattering from a convex object is trivial. Trajectories either

collide once with the object, or miss entirely (see Fig. 1).



In a nonzero magnetic field perpendicular to the plane, a Hall electric field must
also be present. Otherwise, a particle far from the potential will circle in a closed
cyclotron orbit, and never encounter the potential. The Hall electric field is taken to
be in the y direction in this article

Scattering in a magnetic field appears to divide into two cases, (1) scattering from
a smooth, slowly varying potential, and (2) scattering from a more rapidly varying
potential. In the first case, scattering is tame. The guiding center of the incident
particle’s cyclotron orbit nearly follows an equipotential surface. The particle detours
around the scatterer, and emerges with almost the same y guiding center coordinate
that it entered with (see Fig. 2). The only important effect of the scatterer is that
the outgoing particle reaches a given z coordinate at an earlier time than it would
have for V = 0. This problem has been discussed by several authors.3--

Scattering from an abrupt barrier is more complicated. In contrast to scattering
from a very smooth potential, the trajectory may encircle the scatterer many times
before it escapes. The outgoing y guiding center coordinate can also be quite different
from the incoming coordinate (see Fig. 3 ). As discussed in section III, the scattering
dynamics of abrupt potentials are generic and apply to potentials with finite gradients
as well.

A special case that can be solved completely is scattering from a thin horizontal
wall.”® A portion of a scattering trajectory is shown in Fig. ( 4 ). For this case, the
y guiding center coordinate is a constant of the motion, so that the most interestir
variable is the number of collisions. For a general hard scatterer, one can turn t'e
continuous scattering trajectory into a discrete hamiltonian map, by recording culy
the points of collision with the scatterer. In general, this is a two-dimensional raap,
because both the collision point and contact angle are required to calculate the aext

collision point (and contact angle). For the thin horizontal wall, however, since the



y guiding center coordinate is a constant of the motion, the hamiltonian map is one-
dimensional.

The perimeter of the horizontal wall is parameterized by re(0,1]. There are two
dimensionless parameters, the diameter of the cyclotron orbit «, and the amount by
which the orbit translates in one period, which is proportional to the Hall field E,
equal to 20. Both a and 3 are measured in units of the perimeter of the wall. There
is also an initial condition, the angle 6¢[0,27) at which the particle begins with its
guiding center a specified distance from the bazrier.

The one-dimensional Hamiltonian map can be used to calculate the number of
collisions N, marimized over the initial condition 8, for a given set of parameters. A
fairly typical section through parameter space is shown in Fig. (5). For the largest r
plotted (largest electric fields), the particle can collide no more than 5 times with the
barrier. As the field is reduced, it becomes possible to collide 9 times, then 13. As r
is reduced further, N diverges. (All of the spikes in Fig. (5) diverge to infinity, and
appear finite only because of fixed numerical resolution.) N comes down, diverges
again, and in fact diverges an infinite number of times before reaching an accumulation
point ar r = 3.5. A simple analytic formula describes the location of the divergences.
Other sets of divergences are found at still lower r.

As r approaches a typical point of divergence, the particle trajectory approaches
a periodic trajectory, such as the one shown in Fig. (6). A scattering state coming
fron —o0o cannot become caught in a periodic trajectory. It can, however, become
caught in a trajectory that is arbitrarily close to a periodic trajectory. In that case,
the trajectory corresponds to slightly mistuned parameters, so that the trajectory
comes close to the periodic trajectory, but does not quite close.

f one plots the set of points in parameter space at which infinite trajectories exist,

Fig. (7) results. The periodic orbits occur on rays coming from the origin. As will



be discussed below, there are also lines of quasipertodic infinite orbits, such as the
one extending upward and to the right from (r,s) = (0.25,0). The lines of periodic
orbits are impaled on the lines of quasiperiodic orbits. The length of the periodic line
segments is a discontinuous function of the distance along the quasiperiodic line.
One can construct an exact renormalization group (RG) description of the orbits.
The RG is implemented by constructing first return maps of ever smaller intervals of
the perimeter of the wall. The intervals must be chosen with care so that the man does
not become more complicated at each stage. The existence of quasiperiodic infinite
orbits is known bscause one of the fixed points describes quasiperiodic trajectories.

Details of the RG are described in Ref. (7).

III. GENERAL POTENTIALS

The thin horizontal wall shows unusual scattering behavior in a magnetic field,
including the existence of infinite orbits. It is important to know whether infinite
orbits occur for general potentials in a magnetic field, or whether they are specific
to the thin horizontal wall. It will be shown that infinite orbits occur in general, for
both abrupt and smooth potentials.

The abrupt potential considered in this section is a general simple closed curve A,
outside of which the potential V(7) vanishes, ard inside of which the potential is
infinite (or equivalently, larger than the maximum kinetic energy of the scattering
particle). The curve A should be differentiable (have a unique tangent vector) al-
most everywhere. A particle whose trajectory intersects A reflects specularly at the
boundary, with the angle of incidence equal to the angle of reflection.

Consider an arbitrary initial position and momentum (7, 5), as shown in Fig. (8).
Somewhere along the trajectory, place a short reflecting line segment at an arbitrary

angle. The particle collides, and another line segment is placed across a later part



of the trajectory. This process is continued, and in most cases the trajectory will
eventually intersect itself. The final line segment is placed through this intersection
at an angle so that the angle of incidence equals the angle of reflection. The final
line segment is shaded with stripes. The full curve A can be any curve that passes
through the points at which the collisions occur with a tangent vector parallel to the
line segments.

Many potentials that have an infinite periodic trajectory for a given initial position
and momentum have thus been constructed. The set of potentials is of co-dimension 2,
since what is required is that the one-dimensional manifold A intersects a particular
point with a particular slope (at the striped line segment). As before, by slightly
mistuning the parameters (initial position, momentum, electric field, or magnetic
field), a scattering state results that collides with the potential an arbitrarily large
number of times before escaping to infinity.

We have also demonstrated a solution to a different problem: given a potential, to
find an initial (¥,p) that results in a periodic trajectory. This problem was solved
analytically for rectangles.® One can also make the following observation for general
abrupt potentials. Assume the magnetic field, the Hall field, and the potential are
given. The initial conditions for a trajectory are the initial point along the perimeter,
and the initial momentum vector given by |p) and 8,. If the trajectory is to be periodic
after one orbit, it must return the the initial point with the correct contact angle.
Since energy is conserved, |p} will be correct if the contact point is correct. There are
3 initial conditions and two equations to be satisfied. Usually (but not always) there
will be a one-dimensional manifold of solutions.

The thin horizoutsl wall is known to have two classes of infinite trajectories, periodic
and quasiperiodic. It is not known whether infinits trajectories that are not periodic

exist for general potentials.



We now consider smooth potentials V() that do not have abrupt walls, but rather
nay have a well-defined finite gradient everywhere. The following discussion does not
apply to the special case in which V is infinitely slowly varying (|6V| is infinitesimal
everywhere), which results in trajectories that follow equipotential lines to arbitrarily
good approximation.

Scattering from a smooth potential that has a finite gradient everywhere is com-
pared with scattering from an abrupt potential in Fig. (9). It is cleas tlLat there are
no important qualitative differences between the two cases. For smooth potentials,
the trajectory does not advance as far to the right. Comparable behavior then oc-
curs in a shorter distance. The construction illustrated in Fig. (8) can be repeated
with the reflecting line segments replaced by regions where V rises at a finite rate.
It is simplest if the striped line segment ai the self-intersection remains an abrupt
reflecting wall. This wall can, however, be replaced by a region where V rises at a
finite rate in the vicinity of the self-intersection. Periodic trajectories thus occur for

smooth potentials as well.

IV. QUANTUM POTENTIAL SCATTERING

In the quantum problem, the radius of the cyclotron orbit is quantized. The allowed
radii correspond to the Landau levelsn = 0,1,2,.... An electron has a second quan-
turn number k, which (in the Landau gauge) adjusts its y guiding center coordinate.
An incident electron wavefunction |n;, k; > can scatter and emerge in state |n,, ks >.
Since energy is conserved in the collision, for each outgoing Landau level index n,,
only one guiding ceanter momentum k; is allowed. For example, suppose the Landau
level index is increased by 1 in the collision, increasing the particle’s kinetic energy
by Mwc. Then k must change by an amount such that the y guiding center coordinate

moves downhill in the Hall electric field E, lowering the potential energy by exactly



Rwe.

Quantum scattering is described by a scattering matrix that gives both the ampli-
tude and the phase to scatter into a given Landau level. An incident electron that
develops a substantial amplitude to scatter into a higher Landau level, for example
as E is increased, signals the breakdown of the quantum Hall effect. Because the y
guiding center changes, the collision induces a component of the current in the direc-
tion of the electric field, or a nonzero o;.. A conductivity o, that increases rapidly
with E is an experimental sign of the breakdown of the QHE.!° To see the relevance
of the phase ¢ of the scattering matrix, consider a case where most of the scattering
amplitude is diagonal (the Landau level index coes not change). The group velocity
v, of a wavepacket is proportional to 9¢/0E, where the energy E is proportional to k
(and to the y guiding center coordinate). Thus, a rapid change in 3¢/0E can signal
that the wavepacket is getting caught in a resonance, which is the quantum equivalent
of a long classical orbit.

The quantum scattering effects of interest cannot be calculated by perturbing in the
potential V'(7) or in the Hall field E, nor are they given by methods such as the self-
consistent Born approximation. We have used two methods for quantum scattering.
The first is an exact transfer matrix method applied to a lattice that is fiaite in
the § direction and infinite in the £ direction. The second is a quasiclassical Wigner
density functional approximation. The quasiclassical method uses Wigner's definition
to calculate the phase space density f(7,p5,t = 0) from the incoming wavefunction
¥,. The density f is then numerically time evolved classically until essentially the
entire ensemble has escaped from the scatterer. The resuiting distribution f(7,p,t) is
projected back onto an outgoing wavefunction W3, which defines a scattering matrix.
The two methods of calculating quantum scattering are compared. In cases where

there is close agreement, one can conclude that the quantum dynamics is essentially



following the classical dynamics. For more details about these methods and the results
obtained, see Refs. (11,9,12).

A quantum wavepacket encountering a very slowly varyirg potential has behavior
quite similar to the classical case.>~~® The Landau level index never changes. The
only important modification required in Fig. (2) is that now a wavefunction follows
guiding center trajectory. In the direction perpendicular to the local guiding center
trajectory, the wavefunction for the ground Landau level is a gaussian of extent equal
to a magnetic length | = \/f-t;—/_eji-.

We now consider the relationship of quantum and classical dynamics for an abrupt
potential. The (quantum) phase shift ¢ for typical scattering from an abrupt potential
is shown in kig. (10). The group velocity v, is proportional to —3¢/9E. The plot
shows that the potential generally speeds up the electron, except at a resonance in the
vicinity of energy E = 1.14, where the electron is slowed down significantly. Figure
(11) shows the number of collisions N for classical scattering with parameters that
have large weight in the corresponding Wigner density functional near the resonance.
It can be seen that long classical orbits occur. (We have demonstrated analytically
that infinitely long classical orbits occur, which appear finite in Fig.(11) because of
finite numerical sampling.) The long classical trajectories circle the scatterer many
times, as shown in Fig. (12). In contrast, the very short trajectories, which are more
common, are deflectad above the scatterer and immediately escape for the parameters
of Fig. (12). The short trajectories do not orbit, and thus have no classical probability
of being immediately below the scatterer.

This observation suggests that the relationship of quantum to classical scattering
can be further tested by calculating the probability that the electron is immediately
below the scatterer divided by the probability that it is immediately above the scat-

terer for the exact quantum eigenstate. Figure (13) shows that this probability is



sharply peaked at the center of the quantum resonance at E = 1.14. Thus quantum
mechanically as well, a resonance occurs when the electron orbits the scatterer many
times before escaping. Also shown in Fig. (13) is that there is also an enhanced
probability of scattering into another Landau level at the center of the resonance.

Figure (14) shows the probability of scattering into the same (0) and higher (1)
Landau levels for an abrupt rectangular scattering potential. The quasiclassical cal-
culation gives a semiquantitative approximation to the exact result. It does, however,
overestimate the amount of scattering out of the ground Landau level at low fields
E. Suppose one takes as a criterion for the breakdown of the QHE that there is a
10% probability to scatter into a higher Landau level. The breakdown field E, is
then found to vary strongly with the width of the scatterer in the § direction. For
a magnetic field of 4.7 T, the breakdown field is 225 V/em for a scatterer that is
3.36 magnetic lengths wide and 80 V/cm for a scatterer 6.61 magnetic lengths wide.
These breakdown fields are almost two orders of magnitude smaller than the Zener
tunneling calculation for short range impurities.!® The present estimates are also in
reasonable agreement with the measured value of 70 V/cm.!°

The calculation of phase shifts using the quasiclassical method is more difficult than
the calculation of scattering amplitudes. The calculation can be done, and in some

cases shows semiquantitative agreement with the exact phase shifts.1?.9:12

There are some parallels to the potential scattering investigated here and 4 terminal
junction behavior. Some recent papers on the theory of both classical and quantum
transmission of electrons through 4 terminal junctions are given in Refs. (14-16).

The first two of these references consider the behavior in magnetic fields.

V. SUMMARY

We have shown that classical potential scattering in a magnetic field is complex,
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and exhibits resonances in which an arbitrarily large number of collisions occur. This
applies not only to a hard wall potential that can be solved completely, but for generic
scattering potentials with finite gradients. Only infinitely slowly varying potentials
are in a class by themselves, with trivial scattering dynamics. Quantum scattering
follows the classical dynamics rather closely, and shows sharp quantum resonances.
We have also shown that extended scatterers can strongly enhance Zener tunneling,
and provide a quantitative xplanation for the breakdown of the quantum Hall effect.

Open questions include: (1) Finding a quantitative description for the change in
guiding canter and the number of collisions for general potentials. (2) Determining
whether nonperiodic classical bound states exists for general potentials. (3) A more
detailed comparison to experiments, particularly those measuring noise and fluctua-

tion effects.
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FIG. 1. Potential scattering in zero magnetic field.

FIG. 2. The guiding center trajectory is shown as a heavy line for scattering from a
smooth potential, for which two equipotential surfaces are shown. A portion of the full

trajectory is shown on the left.

FIG. 3. Scattering from a hard square.

FIG. 4. Scattering from a horizontal wall.
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FIG. 5. The number of collisions N maximized over initial angle § as a function of

r=a+ 3, with s = a — (3 fixed at 0.2. N is plotted on a log scale.

FIG. 6. A periodic trajectoryis shown as a heavy line. For slightly mistuned parameters,

the trajectory does not quite close (light line), and eventually escapes.

FIG. 7. The set of parameters for which infinite trajectories exist. Plotted parameters

are of the form (r,s) = (j1/p, 72/p), with j; and j; integers and p = 2520.

FIG. 8. The trajectory starts nsar the tai! of the arrow. The short, heavy line segments
are arbitrary reflecting walls. To obtain a periodic trajectory, the final reflecting wall
(striped) must be placed at the self- intersection point at the correct angle. A curve A that
supports this periodic trajectory can be any curve that passes through the line segments

with a tangent parallel to the line segment.

FIG. 9. A trajectory that collides with a hard wall is shown above, and with a smoothly

rising potential is shown below. The potentials are nonzero inside of the shaded rectangles.

FIG. 10. Scattering phase shift for a free e¢igenstate encountering a rapidly varying
potential that is strongly repulsive inside a rectangle. The phase shift is given when both
the incoming and outgoing states are in the first excited Landau level. The energy is

proportional to the y guiding center coordinate.

FIG. 11. Long classical orbits occur in parts of the region shown, with radius r plotted

between 1.308 and 1.312, and the incoming phase § between 2.337 and 2.339.
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FIG. 12. A portion of a long classical trajectory occurring in Fig. (11) is shown.

FIG. 13. The probability for finding the electron directly below the scatterer divided
by the probability for finding it above in the exact quantum eigenstate (squares). The

probability of scattering into the second Landau level is shown by circles, right scale.

FIG. 14. Scattering probability of a ground Landau level (0) wave packet as a function
of the Hall electric field. The solid lines are the results of the exact quantum calculation
and the dashed lines are the results of the quasiclassical approximation. The probabilities

for scattering into Landau levels higher than 1 are not shown.
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